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Abstract-This paper is complementary to a previous work[l] in which the growth and stability of a system of
thermally induced equally spaced parallel edge cracks in a half-plane consisting of a homogeneous isotropic linearly
elastic brittle solid has been studied. Initially the half-plane has a uniform temperature, and the edge cracks are
introduced by continuous cooling of its free surface. The cracks grow into the solid at an equal rate with the
increasing thickness of the thermal boundary layer which forms close to its free surface. However, because of the
interaction between adjacent cracks, a critical state may be reached after which some of the cracks stop growing
while the remaining ones grow at a faster rate. This new growth regime may again be interrupted at a new critical
state where either the cracks which had stopped growing would then suddenly snap closed while the remaining
cracks jump to a finitely longer length, or a different growth regime takes place, depending on the nature of the
temperature profile. The present work is concerned with a careful examination of the growth regime at and after
the above-mentioned second critical state. This examination requires consideration of three interacting unequal
cracks which involves crack extension in both Modes I and II. As in[1] two different temperature profiles, relevant
to the problem of heat extraction from hot dry rock masses, are considered. It is shown that when the temperature
profile in the solid is in the form of an error function, the inclusion of the third interacting crack changes the
previously obtained results qualitatively (i.e. no crack closure is attained in this case), whereas for the second
temperature profile our new (more complicated) calculations only confirm the previously obtained results.

INTRODUCTION
Because of cooling, externally applied loads, residual-stress build-up due to creep, loss of
moisture and consequent shrinkage, or other natural or imposed processes, cracks often form in
solids. Problems of this kind include the formation of surface cracks in aging wood, thermal
cracks in nuclear reactor fuel elements, shrinkage cracks in drying concrete, desiccation cracks
in deserts and at the bottom of dried up lakes, to name just a few. Cracks of this type can be
considered as being strain controlled rather than stress controlled. In strain controlled prob
lems of this kind, there usually exists a natural mechanism for the cracks to be self-arresting,
while no such mechanism is generally available in the stress controlled problems because, in a
strain controlled problem the total elastic energy available to induce cracking is limited,
whereas in the stress controlled case, the external load may provide the needed energy
continuously.

Cracks governed by a strain controlled mechanism are often highly interacting, so that their
growth pattern may involve unstable sequences of events. A problem of this type has recently
been studied by Nemat-Nasser et al. [1], where a system of equally spaced parallel edge cracks
induced in a half plane by cooling of the free surface, has been carefully studied.t The half
plane in [1] is assumed to be a homogeneous, isotropic, linearly elastic, brittle solid. The cracks
grow under the action of a prescribed temperature profile, and the depth, 8, in which most of
the temperature gradient takes place is used as the "loading parameter".

It has been found in [1] for a collinear growth pattern that if the effect of crack interaction is
not taken into account, then all cracks tend to grow equally as the loading parameter 8
increases. This is the case described in Fig. l(a), which shows a typical unit cell of the infinite
array for a noninteracting crack system. The case of interacting cracks is shown in Fig. l(b), in
which the unit cell now consists of two cracks that may have different lengths. It should be
noted that in both cases, when crack branching is excluded, and when the symmetry of the

tThe basic stability theory for a system of interacting cracks (strain-controlled) was first given by Nemat-Nasser[2],
and a brief account of the theory was reported by Keer et al. [3], and published by Nemat-Nasser[4]. The corresponding
stability theory for interacting cracks in combined fracture modes is given by Nemat-Nasser[5].
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Fig. I. (a) Unit cell for noninteracting cracks; (b) unit cell for two interacting cracks; (c) unit cell for three
interacting cracks.

infinite crack array is exploited, only Mode I crack growth is possible. The case of two
interacting cracks has been explored in detail in [I]. However, the possibility of three
interacting cracks, whose unit cell is described by Fig. I(c), has not been considered in [I] as it
presented a computational complexity that seemed unnecessary to explore at the time. It should
be noted that for the array whose unit cell is described by Fig. I(c), the lack of symmetry about
crack I implies that both Modes I and II exist at this crack, whereas cracks 2 and 3 have Mode I
only; for the theory of stability of the growth of interacting cracks which involve all three
modes (without branching) (see Nemat-Nasser[5]).

The present paper considers three interacting cracks and some of the results will show
qualitative changes with one of the two problems considered in [1], although the essential
features of the growth behavior remain the same. We note that the case of noninteracting
cracks (Fig. la) can be considered a case of constrained stability which is corrected by the
introduction of interacting cracks (Fig. Ib). In fact, it was shown in [1] that a system of
noninteracting cracks is always stable for the considered temperature profiles. An analogy can
be made between this problem and that of a shallow arch with a load acting at its center. If the
arch is assumed to buckle symmetrically, then a critical value for the load can be obtained by a
standard calculation. However, a lower value for the critical load is obtained if the antisym
metric buckling mode is also included. The constrained stability case for the arch is thus the
one in which antisymmetrical displacements are excluded. Similarly, it will be shown here that
the two crack system (Fig. Ib) represents a constrained stability state and that an instability due
to three interacting cracks may manifest itself with a smaller critical load parameter, depending
upon the temperature profile.

For stability considerations as given in [I] the temperature profile was found to be extremely
significant. Two temperature profiles that were used are the following:

T= Toerf(Yy3), y~O,

T = 0 for 0 $ Y $ ~/(n + I),

T= TO{I_Cos7Ty(n+I)-~} for ~/(n+l)$oy$o~
2 n~

T = To for ~ $ y,

(1.1)

(1.2)
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where erf (x) = [2/y'(1T)]fo' e-u2 du; 8 is a length scale which increases as a certain function of
time and is a measure of the depth in which an appreciable temperature gradient has been
formed. Here, as in [1], 8 is used as the "load parameter," and n is taken equal to 1{2.

The present analysis considers the temperature profiles given by eqns (1.1) and (1.2). It will
be shown that for temperature profile (1.1), and when three interacting cracks are considered,
then cracks do not snap closed; this is in contrast to the case where only two interacting cracks
are used, as in [1]. Instead, all cracks remain open with some growing at the expense of others.
For temperature profile (1.2), on the other hand, the inclusion of the third crack does not change
the results previously obtained by Nemat-Nasser et at. [I].

2. STABILITY ANALYSIS

The stability analysis for the case of an elastic, homogeneous, isotropic half space y ~ 0,
having an infinite array of initially equally spaced cracks is considered. It is useful to examine
the cases of noninteracting cracks, two interacting cracks, and three interacting cracks
sequentially so that the difference in the three situations can be made clear.

Noninteracting cracks. If there are no interactions between cracks, then we can consider
the unit cell as given by Fig. I(a). Let the total elastic energy contained in the body per unit
thickness per unit cell be

and let

'if = 'if(h, 8)

S = 2')'h

(2.1)

(2.2)

be the surface energy measured per unit thickness perpendicular to the x,y-plane. The total
potential energy is

1I='if+S (2.3)

and the vanishing of the first variation of II, for dh > 0, defines the equilibrium state given by

a'if
--= 0 = 2')'= Oc

ah (2.4)

where 0 is the energy release rate whose critical value is denoted by Oc; note that because of
the assumed fracture criterion, we must have O:s Oc' The stress intensity factor, K, is related
to 0 by

The stability of the equilibrium state is guaranteed when the second variation of II is positive
for admissible variation of crack length dh, i.e. when

aKlah <0 (2.5)

for dh > O.
Two interacting cracks (see (1)). For this case, which is applicable to Fig. I(b), let

0 1 = O2 = Oc and consider the case when dh2 > O. Note that here OJ = OJ(ht. h2, 8). The total
potential energy is again given by eqn (2.3) but in this case we have

(2.6)

The equilibrium state is defined by setting equal to zero (for fixed 8) the first variation of II for
dh; > 0, which gives - a'iflahj =Gj = Gc. The stability of this state can be investigated by
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consideration of the second variation of II for admissible variations, dh, ~ 0; this leads to

> 0 stable
= 0 critical, for all dh j ~ 0
<0 unstable

(2.7)

where repeated indices are summed for i,j = 1,2. With dh2 >0 set z =dhddh2 and obtain from
(2.7)

o 0 0 {< 0 stable
~h \ Z2 +2 ~h \ z + ~h 2 = 0 critical, for all z ~ 0

I 2 2 > 0 unstable.

(2.8)

As has been shown in [1] aOdah2 = a02/ah\ <0 for the present problem and therefore for the
equilibrium state 0 1 = O2 = Oc to be unstable it is both necessary and sufficient that

(2.9)

Moreover, the equilibrium state is stable if and only if

(2.10)

The critical condition is obtained from

(2.11)

In this case one crack stops growing, while the other crack grows at a faster rate. Critical
condition (2.11) has been used for stability in [1]. Figure 2 (taken from [1]) describes the results
of such an analysis for the temperature profile given by eqn (1.1). Note that for this figure
~ = 51 b is the dimensionless load parameter, a2 = h21b is the dimensionless length, and the
dimensionless critical stress intensity factor Nc = Kc/v(27r)~ToV(b) has the value, Nc = 0.15,
where ~ = 3a£/(1- 2p) and a is the coefficient of thermal expansion. Along line AB the cracks

C>

70r-
I

6'°1 B,

I° 1.0 2D 3.0 4.0 Q 2

Fig. 2. Mter Ref. [I) (Fig. 10). Variations in crack lengths and crack spacing as functions of the load
parameter Il for temperature profile (1.1).
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grow equally with an increase in the load parameter, d. For states corresponding to this portion
of the curve we have iJN1!iJal = iJN2!iJa2$0 (the equality corresponds to the point B only) and
therefore all states on this branch are stable, except for point B which is critical. On the other
hand for the portion BB' we have iJNtI iJa. = iJN2I aa2 > 0 and therefore all states between Band
B' are unstable. It should be noted that if the unit cell given in Fig. I(a) is used (noninteracting
crack case) then it would be concluded that the branch BB' would be stable, since then
iJN/iJa <0. It is thus only through the consideration of interacting cracks (Fig. Ib), that the
critical state at B can be identified.

After point B, crack 1 ceases to grow, while crack 2 continues to extend, as d is increased
(for proof, see [1]). This process continues until the point B* is reached. At this point N I

becomes zero, and after this point it becomes negative. Curve A.BI in Fig. 2 represents the
stable states for a system of cracks with spacing 2b, and curve A 2B2 is for the stable states with
crack spacing equal to 4b. Now, after point B* the only possible state is along curve A 2B2,

which represents a quadrupling of the crack spacing. Hence, if only two interacting cracks are
considered, then at state B* not only those cracks which had ceased growing along branch
BB*, but also every other of the remaining cracks would close with a further increase of d. In
[1] the question was raised whether this phenomenon actually occurs or whether it also
represents a constrained stability due to the fact that three interacting cracks have not been
considered. This latter case will now be discussed.

Three interacting cracks. This case is applicable to Fig. I(c). For given crack lengths hJ, h2

and h3, let the total elastic energy contained in the body per unit thickness per unit cell be
denoted by et; = et;(hJ, h2, h3, 8). Here we note that hI remains fixed (dh. = 0) because

For the three crack case shown in Fig. I(c)

G I-v2 K 2 K2
I =~ ( 11 + 111)

1- v2

G2=~Kf2

G _I-v2
y2

3--y-n13

(2.12)

(2.13)

(2.14)

(2.15)

where K II , K 1I1 are Mode I and II stress intensity factors for crack 1 and K I2 and K13 are,
respectively, the Mode I stress intensity factors for cracks 2 and 3. Since crack 1 is stationary,
the stability analysis will be concerned only with cracks 2 and 3. The equilibrium state is
defined by setting equal to zero (for fixed 8) the first variation of the total potential energy given
by (2.3) where et; and S now depend on hJ, h2 and h3• This results in, for dh j > 0, i = 2, 3 and
dh l =0,

- iJet;/iJh j =Gn i =2, 3. (2.16)

The stability of this equilibrium can be investigated by considering the sign of the second
variation of the total potential energy for admissible variations dh; ~ 0, i = 2, 3. Suppose that
dh2> 0, and set z = dh3/dh2, where z ~ O. Stability conditions are then given by

(2.17)

Here we also have

(2.18)
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Relation (2.18) holds if we recall that crack I remains stationary and a corresponding extension
of, say, crack 2 results in a relaxation of the elastic stress field around crack 3 causing the
incremental reduction in the magnitude of K I3 (see [ID. Thus, for the case when K I2 =K I3 =Ke,
F will be strictly positive if and only if

(2.19)

On the other hand F ceases to be positive if and only if

(2.20)

Therefore, we conclude that for a system of three interacting cracks, if one of the cracks (crack
I) is stationary, then cracks 2 and 3 grow at equal rates (h2 = h3) with increasing 8, provided that
a021ah2=a031ah3 < O. H a state is reached at which a021ah2=a031ah3 = 0, then the growth
regime becomes critical. After this state, crack 3, say, stops growing, while crack 2 continues to
extend with increasing 8. In the numerical example, this occurs at a state corresponding to a
point close to B) in Fig. 2. (See Fig. 4.)

Numerical results. Some of the numerical results for the case of three interacting cracks
(Fig. Ic), will now be reported. The basic equations used for the required analysis are presented
in Section 3 which is self-contained.

We have obtained results for both temperature profiles, (l.l) and (1.2), with Nc = 0.15.
For temperature profile (1.2), our results for three interacting cracks in a unit cell are

essentially identical to those for two interacting cracks given in [I]. Figure 3 is taken from [I].
For states corresponding to points on branch AB in Fig. 3 the cracks grow at an equal rate with
increasing 8. At the state associated with point B, every other crack stops growing. At the state
associated with point B*, N. becomes zero. At this state those cracks which had ceased to
grow will snap closed (this has been proved in [ID while the remaining cracks jump to a finitely
longer length corresponding to point BT in Fig. 3. For states associated with branch BTB h

crack I is closed but crack 2 extends with increasing 8.
In [I] it has been assumed that crack I remains completely inactive after state BT, as if it

had never existed. In our present calculation we have relaxed this constraint, allowing crack I
to remain active in shear after state BT is reached. Hence, for the three interacting cracks

15.4 ~

15.0t
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Fig. 3. Mter Ref. [I) (Fig. 8). Variations in crack lengths and crack spacing as functions of the load
parameter ~ for temperature profile eqn (1.2).
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considered here, crack closure is assumed to mean that the normal displacements (which tend
to open the crack) are zero, but that the tangential (shearing) displacements are not necessarily
zero. However, our results are not altered noticeably by the inclusion of the shear displacement
effects for the temperature profile (1.2).

For the temperature profile (1.1) consideration of the three interacting cracks leads to new
results which are qualitatively different than those given in [1]. We shall summarize these new
results next.

(a) Cracks grow at equal rates until a critical state, corresponding to point B in Fig. 4, is
reached. At this point every other crack ceases to grow, while the remaining cracks grow at a
faster rate with increasing 8. This corresponds to branch BBt in Fig. 4 (the solid curve), on
which crack 1 has a constant length equal to that associated with point B, i.e. at = 0.459.

(b) At the state corresponding to point B1 (which is located below point BT on the branch
BBtBT), every other of those cracks which have continued to grow with increasing 8 (along
branch BBt ) stop growing, while the remaining cracks continue to extend with increasing 8.
After this state the unit cell will be as shown in Fig. l(c), where cracks 1 and 3 are stationary
(with at =0.459 and a3 =1.442), while crack 2 increases with increasing 8. The values of the
energy release rates G. and G2 (at cracks 1 and 2, respectively) remain less than Gc for states
corresponding to the branch B.B2, but do not become zero. Moreover, the Mode I stress
intensity factors KII and K13 never cease to be positive for the three crack system, which
indicates that no crack closure takes place for this case. We therefore see that the analysis
presented in [1] for two interacting cracks represents a constrained stability analysis in the
sense that branch BtBr, which has been regarded to represent stable states for the two crack
system, actually corresponds to unstable states when the unit cell having three cracks (Fig. Ie)
is considered.

At point Bt in Fig. 4, a. = 0.459, and a2 = a3 = 1.442. Points on the solid curve BtB2
correspond to states for which at = 0.459, a3 = 1.442, and a2 is increasing with /1. Points on the
dashed curve BtB2, on the other hand, correspond to a unit cell in which crack 1 is assumed to
not exist (to be inactive in shear as well as in normal displacement; i.e. crack 1 is assumed to
be glued back together). As is seen by comparing the solid and the dashed curves B.B2, the
inclusion of crack 1 changes the results only very slightly.
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Fig. 4. Variations in crack lengths and crack spacing as functions of the load parameter 11 for temperature
profile eqn (1.1). Unit cells used to obtain the indicated portions of the growth curves are denoted by inserts

(iHv) as discussed in text (Section 2, Numerical results).
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The dash-dot curve A2B2 in Fig. 4 is obtained for noninteracting cracks with spacing equal
to 4b, and the dash-dot curve AtBt is for noninteracting cracks with spacing equal to 2b. Since
point B t on the solid curve BBt is essentially the same as that on the dash-dot curve AtB(,
which can be obtained with considerably less effort, and also since the same comments apply to
point B2 and curve A 2B2, we see that curves AB, AtB(, A 2B2, etc. are sufficient to give the
essential features of the growth regime of interacting straight edge cracks considered in this
study. After these curves are obtained, points B, B(, B2, etc. can be established by a stability
analysis which involves only two interacting cracks.

Various curves in Fig. 4 are identified by the inserts given therein. Insert (i) (for curve BB t )

represents the case where every other crack has ceased to grow while the remaining cracks
continue to grow at a faster rate; insert (ii) (for curve AtBt) shows the results corresponding to
the solution for the case where every other crack is removed; insert (iii) (for curve B tB0 shows
the results corresponding to the case where two cracks have ceased to grow, while the
remaining crack in the unit cell continues to grow at a faster rate. Insert (v) (for curve BtB2,

dashed) shows the same result as for (iii) but with the central crack assumed to have been
removed; and insert (iv) (for curve A2B2) gives the result for the crack array with a spacing of
4b.

3. AN AL YSIS FOR THREE INTERACTING CRACKS

We shall now formulate the plane problem of a half-space weakened by a system of equally
spaced parallel cracks whose unit cell is given by alternate lengths hI. h2 and h3 (Fig. Ic). Let
the crack spacing be b, and let the cracks be opened by a nonuniform temperature distribution
(cooling) given by eqn (1.1). The boundary conditions appropriate to the considered problem are
then given as

TxAO, y) = - PTo[l- erf (y\/(3)/8)] O<y<ht (3.1)

Txy(O, y) = 0 O<y < ht (3.2)

TxAb, y) = - PTo[l- erf (yy(3)/8)] O<y < h2 (3.3)

Txy(b. y) = 0 O<y < h2 (3.4)

Txx(- b, y) = - PTo[I - erf (yy(3)/8)] 0< Y < h3 (3.5)

Txy(- b, y) = 0 O<y < h3. (3.6)

It is convenient to use the representation for the components of the stress tensor for a
vertical crack in an elastic half-space given by Keer and Chantaramungkorn[6]. A suitable
superposition will allow for the complete representation of the crack array. It can be shown that
the crack system constructed from cracks 2 and 3 will be entirely in Mode I while the crack
system constructed from crack I will involve both Modes I and II. Thus boundary conditions,
eqns (3.4) and (3.6), will be automatically satisfied by symmetry. The remaining boundary
conditions, eqns (3.1)-(3.3), (3.5) lead to the following system of singular integral equations:

2~ fl Dt(t)Gt(;;, ;n dt +~ f2 ~(t)G2(;;' ;t) dt

+4~f3 D3(t)G2(;~,;ndt=-ATo[l-erf(Yf3)] O<y<ht (3.7)

2~ f' CI(t)G3(;~' ;t) dt +4~ f2 ~(t)G4(;;' ;t) dt

- 4~ f3 D3(t)G4(;~' ;n dt = 0 0 < y < h t (3.8)

2~ f' c\(t)Gs(;;, ;:) dt + 2~ f' D\(t)G2(;;, ;t) dt +4~ f2 ~(t)Gt(:;, :n dt

+ 4~ f3 ~(t)G2(:;' :n dt= -ATo[l-erf (Yf3)] 0< Y < h2 (3.9)
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-~ i ftl

Cl(t)GS(;~' ;:) dt +~ Lhl Dt(t)G2(;;, ;:) dt +~ LhZ ~(I)G2(:;' ;;) dl

+;;, LIt31J)(I)GI(;;'~) dl= - ATo[l-erfet3)J 0< y < h) (3.10)

where A = 41TPO- v)(l +v)/E. The functions Ct(t), DI(t), D2(t) and 1J)(t) represent appropriate
dislocation densities and the kernels Ol(t, Y), .. . Os(t, y) are given by

Ot(t, y) == 2 coth (y + t) - (y +3/) cosech2 (y + t) +4ty - cosech2 (y + t) coth (y + t)

- 2coth (y - t) +(y - t) cosech2 (y - t) (3.11)

02(t, y) = 2tanh (y + t)+ (y + 3/) sech2 (y + I) -41y sech2 (y + t) tanh (y + t)

- 2 tanh (y - t) - (y - I) sech2 (y - t) (3.12)

0 3(1, y) ;:;: (y - t) cosech (y + I) coth (y + I) +21y cosech (y +t)[2 coth2 (y +t) - 1]

- (y - t) cosech (y - t) coth (y - t) (3.13)

04(t, y) == sech (y + t) - (y + I) sech (y + t) tanh (y + t) + 2ty sech (y + t)

x [2 tanh" fy + I) -1] - sech (y - I) + (y - I) sech (y - I) tanh (y - t) (3.14)

Gs(t, y) = - sech (y + I) +(y - 31) sech (y + t)tanh (y +t) + 2ty sech (y +t)

x [2 tanh2 (y + I) - 1] +sech (y - t)- (y - f) sech (y -I) tanh (y -I). (3.15)

The representation of eqns (3.11H3.15) in their series form and their summation is given in the
Appendix, eqns (AtHAS).

The intervals (0, hi), ; == 1,2,3 are normalized by appropriately changing to variables s == tlhj ,

T = ylhi for 0 < I, Y< hi, and by setting

CI(f) = 2AToAt(s)/1T(I- s2iI2,AI(s) =A1(- s), (0 < s < 1) (3.16)

~(f)=2AToBi(S)hT(l-S~1/2, Bi(s) = B;(-s), ;==1,2,3, (O<s<1) (3.17)

which aUows for the definition of Ah B; in the interval lsI < 1. (See e.g. Gupta and Erdogan[4].)
By using (3.16) and (3.17) and introducing the nondimensional quantities

(3.18)

we can rewrite the integral equations (3.7H3.l0) in the form

(3.19)

(3.20)

(3.21)

ss Vol. IS. No. 2-<:
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Equations (3.18)-(3.22) can be put into the form of simultaneous, algebraic equations by the
method described in Gupta and Erdogan [7] and by Erdogan et al. [8] as follows:

"\ 1 "1

~ cIA](sj)atG3(t1i, YIp) +2~ c2B2(sJ)a2G4(t2b YIp)

1 "3

- 2~ C3B3(Sk)a3G4(t3b YIp) == 0 p == 1,2, ... nI

p == 1,2, ... nt (3.23)

(3.24)

(3.25)

(3.26)

where nh n2 and n3 are the numbers of integration points in cracks hI. h2 and h3, respectively.
Furthermore .

c, == 11'/(2n, + 1), i == 1,2,3 (3.27)

(
2i - 1 11') ( 2j - 1 11') (2k - 1 11')

Si == cos 2n] + 1"2' Sj == cos 2n2 + 1"2' Sk == cos 2n3 + 1"2 (3.28)

tli == 11'ajsJ2, t2i == 11'a2si2, t3k == 11'a3sk!2 (3.29)

YIp == 11';1 cos (2~: 1)' Y2p == 7T;2 cos (2~: 1)' Y3p == 7T;3 cos (2~:.). (3.30)

Let NIlJ denote the Mode II stress-intensity factor at the crack tip (0, al) and let Nil, NI2 and
NI3 denote the Mode I stress-intensity factors at the crack tips (0, al), (b, a2) and (- b, a3),
respectively. Then, the stress-intensity factors can be obtained directly from the appropriate
dislocation densities and are defined as follows:

NIlJ = lim y'(y - al)Txy(O, y) == - y'(2a])A](l)
y......al+

(3.31)

(3.32)

(3.33)

(3.34)
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The values of A,(l), BI(l), B 2(l) and B 3(l) can be obtained by using the method described in
Krenk[9] as

(3.35)

(3.36)

(3.37)

(3.38)

To adequately discuss the stability of the crack system it is necessary to obtain derivatives of
the stress-intensity factors NII1 , NIt, NI2 and NI3 with respect to the lengths at. a2 and a3; they
are given by

(3.39)

(3.40)

(3.41)

(3.42)

The values of (aA\(l)/aal), (aB1(l)/aal), (aB2(l)/aa\) and (aB3(1)/aa\) can be determined by
using eqns (3.5)-(3.8), respectively. The derivatives (aAI(s;)/aa\), (aB\(S;)/aal), (aB2(sj)/aa\) and
(aB3(Sk)/aal) can be found by differentiating eqns (3.23)-(3.26); their form is deduced from

"I "1

=- ~ cIA1(sj)L,(tli, Y2p) - ~ cI B1(sj)L3(t1i, Y2p) P =1,2, ... n2
i-I .-1

(3.44)

(3.45)
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where

nJ nJ

=L c IA\(sJL7(t1i, Y3p) - L c tB\(s;)L3(t1i. Y3p) P = 1,2, ... n3
;=\ ;=1

a
L 3(at, by) = a aa G2(at, by)

a
L 4(at, by) = b ab G2(at, by)

a
Ls(at, by) = a aa G4(at, by)

a
L 6(at, by) = b ab G4(at, by)

a
L 7(at, by) = a aa Gs(at, by)

a
L 8(at, by) = b ab Gs(at, by).

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

Upon performing the indicated differentiations, eqns (3.47)-(3.54), with the aid of eqns (3.11)
(3.15), we obtain

L1(t, y) = 12t +2 coth (y + t) - 4(y +2t) coth2 (y + t)+ 2(y2 + lOyt +3t2) coth (y + t) cosech2 (y + t)

- 4yt(y + t) cosech2 (y + t)[3 coth2 (y + t) - 1]- 2 coth (y - t) +4(y - t) coth2 (y - t)

- 2(y - tf coth (y - t) cosech2 (y - t) (3.55)

L 2(t, y) = 2(y - t) coth (y + t) cosech (y + t)- (y2- 6yt - t 2) cosech (y + t)[2 coth2 (y + t) - 1]

- 2yt(y + t) cosech (y + t) coth (y + t)[6 coth2 (y + t) - 5]- 2(y - t) cosech (y - t)

x coth (y - t) +(y - t)2 cosech (y - t)[2 coth2 (y - t) - 1] (3.56)

L 3(t, y) = 12t +2 tanh (y + t) - (y +8t) tanh2 (y +t)- t(lOy +6t) tanh (y + t) sech2 (y + t)

+ 4yt2 sech2 (y + t)[3 tanh2 (y + t) - 1] - 2 tanh (y - t) +(y - 4t) tanh2 (y - t)

- 2t(y - t) tanh (y - t) sech2 (y - t) (3.57)

Lit, y) = - 3y tanh2 (y + t) - 2y(y +5t) tanh (y + t) sech2 (y + t) + 4y2t sech2 (y + t)

x [3 tanh2 (y + t) - 1] +3y tanh2 (y - t) +2y(y - t) tanh (y - t) sech2 (y - t) (3.58)

Ls(t, y) = sech (y + t) - (y +3t) tanh (y + t) sech (y + t) + t(5 Y+ t) sech (y + t)[2 tanh2 (y + t) - 1]

- 2yt2 tanh (y + t) sech (y + t)[6 tanh2 (y + t) - 5] - sech (y - t)

+(y - 3t) sech (y - t) tanh (y - t)+ t(y - t) sech (y - t)[2 tanh2 (y - t) -1] (3.59)
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L 6(t, y) = - 2y sech (y + t) tanh (y + t) +y(y +2t) sech (y + t)[2 tanh2 (y + t) - 1]

- 2y2 t sech (y + t) tanh (y + t)(6 tanh2 (y + t) - 5] +2y sech (y - t) tanh (y - t)

- y(y - t) sech (y - t)[2 tanh2 (y - t) -1] (3.60)

L 7(t. y) =- sech (y + t) +(y - 5t)sech (y + t) tanh (y + t)+ 3t(y + t) sech (y + t)[2 tanh2 (y + t) -1]

- 2yt2 sech (y + t)tanh (y + t)[6 tanh2 (y + t) - 5] +sech (y - t)

- (y - 3t) sech (y - t) tanh (y - t)- t(y - t) sech (y - t)[2 tanh2 (y - t) -1] (3.61)

Ls(t, y) = 2y sech (y + t) tanh (y + t) - y(y - 5t) sech (y + t)[2 tanh2 (y + t) - 1]

- 2y2t sech (y + t) tanh (y + t)[6 tanh2 (y + t) - 5] - 2y sech (y - t) tanh (y - t)

+ y(y - t) sech (y - t)(2 tanh2 (y - t) - 1]. (3.62)

The derivatives of NIl1 , Nil, NI2 and NI3 with respect to a2 are given by

(3.63)

(3.64)

(3.65)

(3.66)

The derivatives (aA t(Sj)/aa2), (aB t(Sj)Jaa2), (aBbj)/aa2) and (aB3(Sk)/aa2) can be determined
from the following system of linear equations:

(3.67)

(3.68)

(3.69)

(3.70)
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The derivatives of NII1 , NIl, N12 and NI3 with respect to a3 can be determined in the same
manner as those with respect to az and the results will not be recorded here.

The analysis is therefore seen to require the solution of four simultaneous integral equa
tions, eqns (3.23)-(3.26), to determine the stress intensity factors, given by eqns (3.31)-(3.34). In
addition it is necessary to obtain the derivatives of the stress intensity factors, given by eqns
(3.63)-(3.66). The number of simultaneous equations used to give three digit accuracy was about
120, where the number of equations per crack was generally taken to be proportional to the
crack length. It is noted that as the ratios, hl/b, or the ratios, hi/hi> ;:;e j, become larger the
accuracy tends to diminish.

4. CONCLUSIONS

When a linearly elastic brittle half-plane (solid) initially at a uniform temperature is cooled at
its free surface, edge cracks may develop in the solid, which then penetrate into the half-plane
as the thickness of the thermal boundary layer increases. Crack systems of this kind are
governed by a strain controlled mechanism, in the sense that the total elastic energy available to
induce cracking is limited, and therefore the crack extension tends to be self-arresting. It has
been shown in [1] and in the present paper that the crack growth regime for this class of
problems is highly affected by the interaction between adjacent cracks, as well as by the form
of the temperature profile. In [1], as well as in the present paper, two temperature profiles have
been considered for detailed calculation; i.e. temperature profiles given by eqns (1.1) and (1.2).
However, whereas in [1] only two interacting cracks were considered, in the present work
which complements [1], we have presented a detailed and complete study for three interacting
cracks. On the basis of this study, the following conclusions are obtained.

l. The form of the temperature profile (the effective loading) and the interaction between
adjacent cracks are the most important factors in the crack growth process.

2. If no interaction between adjacent cracks is considered (constrained stability analysis),
then one may erroneously conclude in a system of parallel equally spaced edge cracks, that all
cracks will grow at equal rates with increasing depth of the thermal layer. On the other hand,
when interactions between two or three adjacent cracks are introduced, then qualitatively and
quantitatively different results are obtained.

3. For the temperature profile (1.2) the results obtained in the present work for three
interacting cracks are both qualitatively and quantitatively the same as those reported in [1] for
two interacting cracks. On the other hand, for temperature profile (1.1) the results presented in
this paper differ qualitatively and quantitatively from those given in [1], indicating that for this
temperature profile the stability analysis based on two interacting cracks actually represents a
constrained one, and therefore the true picture is obtained by the consideration of three
interacting cracks, although the calculation for more than two interacting cracks requires
consideration of correspondingly greater numbers of simultaneous integral equations, and
therefore is considerably more complicated.

4. If only limited information is desired, then even for temperature profile (1.1) the essential
features of the growth regime may be extracted by the consideration of two interacting cracks
alone. As is seen from Fig. 4, the states corresponding to B, BJ, Bz, etc. can be obtained from
the study of two interacting cracks (see Nemat-Nasser and Oranratnachi[10] for a more
detailed discussion). Moreover, comparison between the dashed curve B1Bz (which is obtained
for two interacting unequal cracks) and the solid curve B.Bz (which is obtained for three
interacting unequal cracks) shows that quantitatively they are essentially the same, although
qualitatively they represent completely different systems. Therefore, the spacing of the longest
cracks for temperature profile (1.1) can be calculated on the basis of the information obtained
for states corresponding to points B, B I • Bz, etc. in Fig. 4. For this temperature profile, unlike
that for temperature profile (1.2), no crack closure takes place: cracks grow until a critical state
is reached, then alternate cracks stop growing, while the remaining ones grow at a faster rate,
until a new critical state is reached, at which every other of those cracks which had continued
growing stop growing, while the remaining ones continue to grow at a faster rate, and this
process keeps repeating itself as the depth of the thermal layer increases.

5. Finally, we must point out that we have only considered collinear extension of equally
spaced edge cracks. Crack branching and noncollinear extension have not been considered. In
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(A2)

this sense, therefore, our stability analysis may still represent a constrained one, although the
essential features of the problem seem to have been revealed by our calculations.
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APPENDIX

o (1Tt 1TY)_2b ~ { 2(y+/) _(y+3t)((y+/)2_(2kb)2+ 4Iy(y+/)(y+/)2_3(2kbi] (y-t)[(y-/)2+ 3(2kb f]}
I 2b' 2b - 1T k~'" (y +oZ +(2kb)2 [(y +1)2 +(2kb )2]2 [(y +tf +(2kb )2]3 (y - t)2 +(2kb )2]2

= 2coth [2: (y +t)] - 2~ (y +3/) cosech2 [2~ (y + t)] +4(;rty cosech2 [2~ (y +t)] coth [; (y + t)]

-2coth [2~ (y - t)] +; (y - I) cosech2
[; (y - t)] (AI)

(
1Tt 1TY) _ 2b ~ { 2(y +t) (y +3/)[(y + tf - (2k _l)ib2

]

O2 2b' 2b --; k~'" (y +oZ+(2k -l)W [(y + t)2+(2k-Ifb2F
4ly(y + I)(y +t)2 - 3(2k - l)2b2] (y - I)(y - 1)2 +3(2k _1)2b2]}

+ [(y + t)2+ (2k _1)2b2]3 (y - t)2+ (2k -l)2b2]2

= 2tanh [2~ (Y+ I)] +2~ (y +3/) sech2 [2~ (y + t) ] - 4 (;bY/Y sech2 [;b(Y +I)] tanh [;b(Y+ I)]

- 2 tanh [..!.. (y - I)] _..!.. (y - t) sech2 [..!.. (y - I)]
2b 2b 2b

o (-rrt TrY)_2b ~ ( 1)kf(y-t)[(Y+/f-(2kb)2] 4/y(y+/)[(y+/f-3(2kbf]
3 2b' 2b - -;-kf!", - l [(y +1)2 +(2kWl2 + ((y + t)2 +(2kb)~j

= 2~ (y - t) cosech [2~ (y +t)] coth [2~ (y +I)] +2C:YIycosech (2~ (y + t)]{2COth2 [2~ (y +I)] -)}
_..!.. (y - I) cosech [..!.. (y - I)] coth [..!.. (y - t)] (A3) .

2b 2b 2b

(
1Tt 1TY) 4b ~ { [(y + tf - (4k + 1)2b2] 4ty[3(y +1)2 - (4k + l)2b 2

] (y - t)2 - (4k +l)2b2 }
0 4 2b' 2b = -; k~'" (4k + l)b (y +1)2 +(4k + l)2b2]2 + [(y + t)2 +(4k + Ifb2]1 +[(y - tf+ (4k + 1)2b2]2

= sech [2~ (y +t)] -; (y + I) sech [; (y + t)] tanh [2~ (y + t)]

+2(;rIy sech [; (y +t)]{2tanh2 [2~ (y +t)] -I}

- sech [..!.. (y - t)J +..!.. (y - t) sech [..!.. (y - t)] tanh [..!.. (y - t)]
2b 2b 2b 2b

(A4)
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Gs(;~, ;;) = 2: k~~ (-ll(2k -l)b{(y +If+;2k _ I)2b2 [(y :~2-}gkY_+I;~b2]2
4Iy[3(y +If - (2k -1)2b2] (y -If - (2k - 1)2b2 }

[(y +1)2 +(2k _1)2b2]3 +[(y - 1)2 +(2k -1)2b2f

= - sech [; (y +I)]+; (y - 31) sech [; (y +I)] tanh [; (y +I)]
+2(2:)2Iy sech [2: (y +I)]{2tanh2

[; (y +I)] -I}

+ sech [~(y - I)] -~ (y - I) sech [~(y - I)] tanh [~(y - I)]
2b 2b 2b 2b·

(AS)


